$R_{5} \mathrm{Pt}_{4}$ Compounds ($R=\mathbf{T b}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Lu}$ and Y$)$ Isotypic with $\mathrm{Pu}_{5} \mathbf{R h}_{4}$

By J. Le Roy, J.-M. Moreau, D. Paccard and E. Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland and Centre Universitaire de Savoie, IUT A nnecy and Laboratoire de Magnétisme, CNRS, Grenoble, France

(Received 2 May 1978; accepted 14 June 1978)

Abstract

Y}_{5} \mathrm{Pt}_{4}\), Pnma, $Z=4, a=7.458$ (5), $b=$ 14.546 (7), $c=7.519$ (4) Å, $D_{x}=9.97 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Ag}$ $K(1)=593 \mathrm{~cm}^{-1}$. Data were collected on an automatic diffractometer and an empirical absorption correction was used. Starting positions for least-squares refinement were obtained from the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ structure with which isotypism was suspected. $R=0.069$ for 738 independent reflections. $\mathrm{Tb}_{5} \mathrm{Pt}_{4}, \mathrm{Dy}_{5} \mathrm{Pt}_{4}, \mathrm{Ho}_{5} \mathrm{Pt}_{4}, \mathrm{Er}_{5} \mathrm{Pt}_{4}$, $\mathrm{Tm}_{5} \mathrm{Pt}_{4}$ and $\mathrm{Lu}_{5} \mathrm{Pt}_{4}$ are isostructural with $\mathrm{Y}_{5} \mathrm{Pt}_{4} . \mathrm{Y}_{5} \mathrm{Pt}_{4}$ is isotypic with $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ which itself is similar to $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ and $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$. The structure can be described as a netting of $\mathrm{Y}_{6} \mathrm{Pt}$ trigonal prisms and $\mathrm{Y}_{8} \mathrm{Y}$ cubes. This construction principle is also found in the rhombohedral $\mathrm{Er}_{3} \mathrm{Ni}_{2}$, the tetragonal $\mathrm{U}_{3} \mathrm{Si}_{2}$ and the tetragonal $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ type where all atoms of the minority component are in the centres of the trigonal prisms. $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ and $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ can be built up of units similar to those found in FeB and $\mathrm{U}_{3} \mathrm{Si}_{2}$.

Introduction. Structural data on $R_{7} \mathrm{Pt}_{3}, R_{2} \mathrm{Pt}, R_{5} \mathrm{Pt}_{3}$ and $R \mathrm{Pt}$ compounds together with a compilation of earlier
work on R_{x} Pt phases have recently been published in the course of experimental studies on the $R_{x} \mathrm{Pt}(x \geq 1)$ intermetallic phases (Le Roy, Moreau, Paccard \& Parthé, 1978). In the system $\mathrm{Yb}-\mathrm{Pt}$, Iandelli \& Palenzona (1975) found a compound $\mathrm{Yb}_{5} \mathrm{Pt}_{4}$ with the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ structure type. In this paper we report on the structure determination of other rare-earth-platinum compounds with the same stoichiometry.

Alloys of $\mathrm{Y}_{5} \mathrm{Pt}_{4}, \mathrm{~Tb}_{5} \mathrm{Pt}_{4}, \mathrm{Dy}_{5} \mathrm{Pt}_{4}, \mathrm{Ho}_{5} \mathrm{Pt}_{4}, \mathrm{Er}_{5} \mathrm{Pt}_{4}$, $\mathrm{Tm}_{5} \mathrm{Pt}_{4}$ and $\mathrm{Lu}_{5} \mathrm{Pt}_{4}$ were prepared from the elements by conventional arc melting techniques. The intensities of a single crystal of $\mathrm{Y}_{5} \mathrm{Pt}_{4}(40 \times 35 \times 110 \mu \mathrm{~m})$ were collected with graphite-monochromated $\mathrm{Ag} \mathrm{Ka}_{\mathrm{I}}$ radiation on a computer-controlled four-circle Philips PW 1100 diffractometer. Data collection was carried out to a limit of $0.64 \AA^{-1}$ in $\sin \theta / \lambda$, yielding 1145 independent reflections, of which 578 with $I>3 \sigma(I)$ plus 160 with $I<3 \sigma(I)$ (but where $|F|_{\text {calc }}>|F|_{\text {obs }}$) were used in the structure refinement. The CAMEL $J O C K E Y$ experimental method for absorption correction (Flack, 1975, 1977) was used $(\mu R=1.59)$.

Table 1. Comparison of the parameters of slightly different $M_{5} X_{4}$ structures all having space group Pnma and similar ratios of the cell parameters
The e.s.d.'s are given in parentheses. The Debye-Waller factor for $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ is defined as $\exp \left[-2 \pi^{2} \times 10^{-2} U(2 \sin \theta / \lambda)^{2}\right]$. The numbering for $Y_{5} \mathrm{Pt}_{4}$ is shown in brackets.

			$\mathrm{Sm}_{5} \mathrm{Ge}_{4}($ a $)$	$\mathrm{Gd}_{5} \mathrm{Si}_{4}(b)$	$\mathrm{Pu}_{5} \mathrm{Rh}_{4}(c)$	$\mathrm{Y}_{5} \mathrm{Pt}_{4}($ d $)$	$U\left(\AA^{2}\right)$
$4 M$	$\|\mathrm{Y}(1)\|$ in 4(c)	x	0.2880 (8)	0.3560 (1)	0.3225 (1)	0.3180 (8)	1.3 (1)
		z	0.9976 (8)	0.0113 (1)	0.01077 (9)	0.0110 (8)	
$8 M$	$\|\mathrm{Y}(2)\|$ in $8(d)$	x	0.3795 (5)	0.3164 (1)	0.3424 (1)	0.3428 (5)	1.2 (1)
		y	0.6157 (3)	$0 \cdot 6223$ (0)	0.62196 (4)	$0 \cdot 6228$ (3)	
		z	$0 \cdot 1612$ (5)	0.1795 (1)	0.16361 (6)	$0 \cdot 1667$ (6)	
$8 M$	$\|\mathrm{Y}(3)\|$ in $8(d)$	x	0.9747 (5)	0.0289 (1)	0.0015 (1)	0.0009 (6)	1.4 (1)
		y	0.3996 (3)	0.4028 (0)	0.40796 (4)	$0 \cdot 4085$ (3)	
		z	$0 \cdot 1781$ (5)	$0 \cdot 1827$ (1)	0.17796 (6)	$0 \cdot 1803$ (6)	
$4 X$	$\|\mathrm{Pt}(1)\|$ in $4(c)$	x	$0 \cdot 176$ (2)	0.241 (1)	0.1898 (3)	$0 \cdot 1869$ (4)	1.8 (1)
		z	0.367 (2)	0.375 (1)	0.3529 (2)	0.3590 (4)	
$4 X$	$[\mathrm{Pt}(2) \mid$ in $4(c)$	x	0.413 (2)	0.479 (1)	0.4602 (3)	0.4529 (4)	1.6 (1)
		z	0.612 (2)	0.599 (1)	0.6114 (2)	0.6108 (4)	
$8 X$	$\{\mathrm{Pt}(3) \mid$ in $8(d)$	x	0.221 (1)	$0 \cdot 1435$ (6)	0.1845 (2)	$0 \cdot 1818$ (2)	$1 \cdot 3$ (1)
		y	0.5449 (6)	0.5395 (3)	0.5391 (1)	0.5411 (1)	
		z	0.469 (1)	0.4716 (7)	0.4609 (1)	$0 \cdot 4673$ (2)	

[^0]Assuming isotypism with $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ (Smith, Johnson \& Tharp, 1967) or $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ (Iglesias \& Steinfink, 1972) the parameters of both structures were used as starting points for the least-squares refinement by $C R Y L S Q$ (XRAY system, 1976). In both cases, the atomic parameters converged to the same values. The results are given in Table 1. The final $R\left(=\sum|\Delta F| / \sum\left|F_{0}\right|\right)$ using isotropic thermal parameters and relativistic Hartree-Fock scattering factors (Cromer \& Mann, 1968) and anomalous dispersion corrections from International Tables for X-ray Crystallography (1974) was 0.069.*

The isotypism of $\mathrm{Tb}_{5} \mathrm{Pt}_{4}, \mathrm{Dy}_{5} \mathrm{Pt}_{4}, \mathrm{Ho}_{5} \mathrm{Pt}_{4}, \mathrm{Er}_{5} \mathrm{Pt}_{4}$, $\mathrm{Tm}_{5} \mathrm{Pt}_{4}$ and $\mathrm{Lu}_{5} \mathrm{Pt}_{4}$ with $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ was established by comparing observed and calculated powder diffraction intensities with the LAZY PULVERIX program (Yvon, Jeitschko \& Parthé, 1977). The lattice parameters reported in Table 2 were obtained with PARAM (XRAY system, 1976). The reflexions were measured on films, calibrated with Si , taken with a Guinier-de Wolff camera and $\mathrm{Cu} \mathrm{K} / \mathrm{l}$ radiation. The variation of the cell parameters is a consequence of the normal lanthanide contraction.

Discussion. A comparison of the point positions in Table 1 between $\mathrm{Y}_{5} \mathrm{Pt}_{4}, \mathrm{Sm}_{5} \mathrm{Ge}_{4}, \mathrm{Gd}_{5} \mathrm{Si}_{4}$ and $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ (Cromer, 1977) shows that $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ is closer to $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ than the other two. As has already been noted by Cromer, the main differences are in the values of the x parameters, the extremes occurring for $M=\mathrm{Sm}$ and Gd , with $M=\mathrm{Y}$ or Pu being intermediate. The difference between the structure of the rare-earth silicide and germanide is unexpected and remains to be explained. We feel therefore that it is appropriate to state that $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ is isotypic with $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ although the two other structures had been determined many years

[^1]
before and normally the name of the type is taken from the compound whose structure is first determined.

The structure of $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ can be described as a netting of $\mathrm{Y}_{6} \mathrm{Pt}$ trigonal prisms and $\mathrm{Y}_{8} \mathrm{Y}$ cubes as shown in Fig. 1. Actually in $\mathrm{Y}_{5} \mathrm{Pt}_{4}$, the Pt -centred trigonal prisms and the Y-centred cubes are slightly deformed as can be seen from the list of interatomic distances given in Table 3. The six Y atoms surrounding a given Pt atom in the form of a trigonal prism have been marked by asterisks. $\mathrm{Y}(1)$ which is in the centre of the cube has, however, also short bonds to Pt atoms in neighbouring trigonal prisms. As shown in Fig. 1 the $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ structure can also be described as a stacking of $\mathrm{U}_{3} \mathrm{Si}_{2}$-like and FeB-like layers which was first noted by Kripyakevich \& Jartis (1975).

In the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ structures one finds the same type of coordination polyhedra. However, due to the different values of the atomic parameters, an atom in the centre of a trigonal prism in one compound has a different number of equidistant neighbours from the other. These are presented graphically in Fig. 2. Thus a Ge atom has about seven Sm neighbours, only five

Table 2. Lattice constants of $R_{5} \mathrm{Pt}_{4}$ compounds with the $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ structure type (space group Pnma)
E.s.d.'s are in parentheses; $v=$ volume of the unit cell; $n=$ number of atoms in the unit cell.

	$a(\AA)$	$b(\AA)$	$c(\AA)$	$(V / n)^{1 / 3}$	Reference
$\mathrm{Tb}_{5} \mathrm{Pt}_{4}$	$7.495(5)$	$14.602(8)$	$7.565(5)$	2.84	(a)
$\mathrm{Dy}_{5} \mathrm{Pt}_{4}$	$7.452(5)$	$14.533(8)$	$7.526(5)$	2.83	(a)
$\mathrm{Ho}_{5} \mathrm{Pt}_{4}$	$7.435(6)$	$14.490(9)$	$7.512(7)$	2.82	(a)
$\mathrm{Er}_{5} \mathrm{Pt}_{4}$	$7.417(5)$	$14.456(7)$	$7.486(6)$	2.81	(a)
$\mathrm{Tm}_{5} \mathrm{Pt}_{4}$	$7.385(3)$	$14.378(8)$	$7.460(5)$	2.80	(a)
$\mathrm{Yb}_{5} \mathrm{Pt}_{4}$	7.390	14.319	7.506	2.80	$(b)^{*}$
$\mathrm{Lu}_{5} \mathrm{Pt}_{4}$	$7.323(3)$	$14.261(7)$	$7.388(3)$	2.78	(a)
$\mathrm{Y}_{5} \mathrm{Pt}_{4}$	$7.458(5)$	$14.546(7)$	$7.519(4)$	2.83	(a)

References: (a) This work. (b) Iandelli \& Palenzona (1975).

* The point positions have not been determined for $\mathrm{Yb}_{5} \mathrm{Pt}_{4}$. The compound was listed as having the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ structure type; however, the point positions are probably closer to those of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$. and filled circles to Pt atoms. At $y \simeq 0$ and $y \simeq \frac{1}{2}$ one finds a segment of the FeB type, while at $y=\frac{1}{4}$ and $\frac{3}{4}$ the arrangement is the same as in the $\mathrm{U}_{3} \mathrm{Si}_{2}$ type.

Fig. 2. Number of closest neighbours surrounding an atom in the trigonal prism centres versus normalized distances for the $\mathrm{Y}_{5} \mathrm{Pt}_{4}$, $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ structures. Atoms forming the surrounding trigonal prism are indicated with full lines, those which do not belong to that prism with broken lines. The height of the line indicates the number of neighbours at a given distance (either one or two). The distances are normalized to the sum of the atomic radii for coordination number $12\left(r_{\mathrm{Y}}+r_{\mathrm{Pt}}=3 \cdot 17, r_{\mathrm{Sm}}+r_{\mathrm{Ge}}=\right.$ $3.18, r_{\mathrm{Gd}}+r_{\mathrm{si}}=3.11 \AA$).

Table 3. Interatomic distances in $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ up to $4 \cdot 1 \AA$
The Y atoms forming the surrounding trigonal prism are marked with asterisks.

$\mathrm{Y}(1)-2 \mathrm{Y}\left(2^{\text {xiv,xv}}\right)$	3.401 (7)	$\mathrm{Pt}(1)-\mathrm{Y}\left(\mathrm{I}^{\text {i }}\right.$)	2.793 (7)
$-2 Y\left(2^{\text {xvi.xvii }}\right.$)	3.407 (7)	$-\mathrm{Y}\left(1^{\text {ii) }}\right.$)	2.920 (7)
$-2 \mathrm{Y}\left(3^{\text {i.v. }}\right.$)	3.539 (7)	$-2 \mathrm{Y}\left(2^{\text {iii, iv }}\right.$)*	2.970 (5)
$-2 Y\left(3^{\text {vi, vii }}\right.$)	3.544 (7)	$-2 \mathrm{Y}\left(3^{\text {i, V }}\right.$)*	$3 \cdot 007$ (5)
$-\mathrm{Pt}\left(\mathrm{I}^{\text {i }}\right.$)	2.793 (7)	$-2 \mathrm{Y}\left(3^{\text {vi, vij }}\right.$)*	$3 \cdot 300$ (5)
$-\mathrm{Pt}\left(1^{\text {vii) }}\right.$)	2.920 (7)	$-2 \mathrm{Pt}\left(\right.$ (1i.,vii $^{\text {i }}$	4.074 (5)
$-\mathrm{Pt}\left(2^{\text {ii) }}\right.$)	2.873 (7)	$-\mathrm{Pt}\left(2^{\text {i }}\right.$)	2.742 (4)
$-\operatorname{Pt}\left(2^{\text {xviii }}\right.$)	$3 \cdot 173$ (7)	$-\mathrm{Pt}\left(2^{\text {ii) }}\right.$)	3.940 (5)
$-2 \mathrm{Pt}\left(3^{\text {xiv,xv }}\right.$)	3.057 (2)	$\mathrm{Pt}(2)-\mathrm{Y}\left(1^{\text {vii }}\right)$	2.873 (7)
$\mathrm{Y}(2)-\mathrm{Y}\left(1^{\text {xi }}\right.$)	3.401 (7)	-Y (${ }^{\text {vilii }}$)	$3 \cdot 173$ (7)
$-\mathrm{Y}(1 \times \mathrm{xii})$	3.407 (7)	$-2 \mathrm{Y}\left(2^{\text {iii, } \mathrm{iv}^{\text {a }} \text { * }}\right.$	2.909 (5)
$-\mathrm{Y}\left(2^{\text {xix }}\right.$)	3.700 (6)	$-2 \mathrm{Y}\left(2^{\mathrm{ix}, \mathrm{x}}\right)^{*}$	2.923 (5)
$-2 Y\left(2^{\text {vi, xii }}\right.$)	3.934 (6)	$-2 \mathrm{Y}\left(3^{\text {vi, vii) }}{ }^{*}\right.$	3.199 (5)
$-\mathrm{Y}\left(3^{\text {vi }}\right.$)	3.526 (6)	$-\mathrm{Pt}\left(1^{\text {i }}\right.$)	2.742 (4)
$-\mathrm{Y}\left(3^{\times x}\right)$	3.686 (6)	$-\mathrm{Pt}\left(1^{\text {vii }}\right)$	3.940 (5)
$-\mathrm{Y}\left(3^{\text {xv }}\right.$)	3.865 (6)	$\mathrm{Pt}(3)-\mathrm{Y}\left(1^{\text {xi }}\right.$)	3.057 (2)
$-\mathrm{Y}\left(3^{\text {i }}\right.$)	4.029 (6)	$-\mathrm{Y}\left(2^{\text {i }}\right)^{*}$	2.822 (5)
$-\mathrm{Y}\left(3^{\text {iv }}\right.$)	4.060 (6)	$-\mathrm{Y}\left(2^{\text {iv }}\right)^{*}$	2.822 (4)
$-\mathrm{Pt}\left(1^{\times \times i}\right)$	2.970 (5)	$-\mathrm{Y}\left(2^{\text {xii) }}{ }^{*}\right.$	2.970 (5)
$-\mathrm{Pt}\left(2^{\text {xxi }}\right.$)	2.909 (5)	$-\mathrm{Y}\left(3^{\text {iv }}\right.$)*	2.951 (5)
$-\operatorname{Pt}\left(2^{\text {ix }}\right.$)	2.923 (5)	$-\mathrm{Y}\left(3^{\text {xiii) }}{ }^{*}\right.$	3.069 (5)
$-\mathrm{Pt}\left(3^{\text {i }}\right.$)	2.822 (5)	$-\mathrm{Y}\left(3^{\text {i }}\right)^{*}$	$3 \cdot 193$ (5)
$-\mathrm{Pt}\left(3^{\times v}\right)$	2.822 (5)	$-\mathrm{Y}\left(3^{\text {vi }}\right.$)	$3 \cdot 258$ (5)
$-\mathrm{Pt}\left(3^{\times \times \mathrm{i}}\right)$	2.970 (5)	$-\mathrm{Pt}\left(3^{\text {xiii }}\right.$)	3.003 (3)
$\mathrm{Y}(3)-\mathrm{Y}\left(1^{\text {i }}\right.$)	3.539 (7)		
-Y(1i)	3.544 (7)	Symmetry code	
$-\mathrm{Y}\left(2^{\text {xii }}\right.$)	3.526 (6)	(i) x, y, z	
$-\mathrm{Y}\left(2^{\times x}\right)$	3.686 (6)	(ii) $x-\frac{1}{2}, \frac{1}{2}-y$	
$-\mathrm{Y}\left(2^{\text {iv }}\right.$)	3.865 (6)	(iii) $\frac{1}{2}-x, y-\frac{1}{2}$	
$-\mathrm{Y}\left(2^{\text {i }}\right.$)	4.029 (6)	(iv) $\frac{1}{2}-x, 1-y$	
$-\mathrm{Y}\left(2^{\text {xv }}\right.$)	4.060 (6)	(v) $x, \frac{1}{2}-y, z$	
$-\mathrm{Y}\left(3^{\times \times}\right)$	3.800 (6)	(vi) $\frac{1}{2}+x, y, \frac{1}{2}$	
$-2 \mathrm{Y}\left(3^{\text {vixiiii) }}\right.$)	3.873 (7)	(vii) $\frac{1}{2}+x, \frac{1}{2}-y$	
$-\mathrm{Pt}\left(1^{1}\right)$	3.007 (5)	(viii) $x, y, 1+z$	
${ }_{-} \mathrm{Pt}\left(\mathrm{I}^{\text {ii) }}\right.$)	3.300 (5)	(ix) $1-x, 1-y$	-z
$-\mathrm{Pt}\left(2^{\text {ii) }}\right.$)	$3 \cdot 199$ (5)	(x) $1-x, y-\frac{1}{2}$	
$-\mathrm{Pt}\left(3^{\text {xv }}\right.$)	2.951 (5)	(xi) $\frac{1}{2}-x, \frac{1}{2}+y$	
$-\operatorname{Pt}\left(3^{\text {xiii }}\right)$	3.069 (5)	(xii) $x-\frac{1}{2}, y, \frac{1}{2}$	
$-\mathrm{Pt}\left(3^{\text {i }}\right.$)	3.193 (5)	(xiii) $x, 1-y, 1$	
$-\mathrm{Pt}\left(3^{\text {xii }}\right.$)	3.258 (5)	(xiv) $\frac{1}{2}-x, y-\frac{1}{2}$	
		(xv) $\frac{1}{2}-x, 1-y$	
		(xvi) $1-x, y-\frac{1}{2}$	
		(xvii) $1-x, 1-y$	
		(xviii) $x, y, z-1$	
		(xix) $x, \frac{3}{2}-y, z$	
		(xx) $\bar{x}, 1-y, z$	
		(xxi) $\frac{1}{2}-x, \frac{1}{2}+y$	

Table 4. Tables for the calculation of the trigonal prism linkage coefficients for the $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ and $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ structure types

For details see Parthé \& Moreau (1977).
$\mathrm{Pu}_{4} \mathrm{Rh}_{4}$
Pnma

	$\mathrm{Pu}(1)$ in 4(c)	$\mathrm{Pu}(2)$ in $8(d)$	$\mathrm{Pu}(3)$ in $8(d)$	Number
$\mathrm{Rh}(1)$ in $4(c)$ $\mathrm{Rh}(2)$ in $4(c)$	0	4	2	$=6$
$\mathrm{Rh}(3)$ in $8(d)$	0	2	4	$=6$
p	0	3	3	$=6$
	$\frac{4}{8}(4+2)+3$ $=6$	$\frac{4}{8}(2+4)+3$ $=6$		

$\mathrm{LC}=(8 \times 6+8 \times 6) / 16=6$
$R_{6(1+E / P)} T_{\mathrm{LC}}=R_{6(1+4 / 16)} T_{6}=R_{5} T_{4}$
$\mathrm{Zr}_{5} \mathrm{Si}_{4} \quad P 4 \mathbf{1}_{1}{ }^{2}$

	$\mathrm{Zr}(1)$ in 4(a)	$\mathrm{Zr}(2)$ in 8(b)	$\mathrm{Zr}(3)$ in 8(b)	Number
$\mathrm{Si}(1)$ in 8(b)	0	3	3	$=6$
$\mathrm{Si}(2)$ in 8(b)	0	3	3	$=6$
p	0	6	6	

$\mathrm{LC}=(8 \times 6+8 \times 6) / 16=6$
$R_{6(1+E / P)} T_{\mathrm{LC}}=\mid R_{6(1+4 / 16)} T_{6} \equiv R_{5} T_{4}$
from the surrounding trigonal prism, the sixth being too far away, and two from outside the prism. A Si atom has seven nearly equidistant Gd neighbours, that is six from the trigonal prism and one from outside. while Pt has nearly eight neighbours, six from the prism and two from outside.

The structure of $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ can be compared with the other structures which are built up of transition-metalcentred trigonal prisms of Y or rare-earth atoms (Parthé \& Moreau, 1977). $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ belongs to the special

Fig. 3. Arrangement of polyhedra in $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ with their centres at $z \simeq \frac{1}{2}$.

Fig. 4. Arrangement of polyhedra in $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ with their centres at $y \simeq \frac{3}{4}$.
group of structures where there are two construction elements: trigonal prisms and tungsten-like cubes of Y or rare-earth atoms. For composition $R_{3} T_{2}$, two structure types of this special group are known: rhombohedral $\mathrm{Er}_{3} \mathrm{Ni}_{2}$ and tetragonal $\mathrm{U}_{3} \mathrm{Si}_{2}$ (Le Roy, Moreau, Paccard \& Parthé, 1977). $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ is an example of the composition $R_{5} T_{4}$. Kripyakevich \& Jartis (1975) have shown that there also exists a second structure with the same composition and the same structural features, namely tetragonal $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ (Pfeifer \& Schubert, 1966). All these structures with centred trigonal prisms may be classified according to the value of the trigonal prism linkage coefficient (Parthé \& Moreau, 1977). The trigonal prism linkage coefficient (LC) for the $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ and the $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ structures can be obtained from Table 4 .

The essential difference between the $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ and the $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ structure may be seen by comparing the (001) projection of $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ (Fig. 3) with the (010) projection of $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ (Fig. 4). In $\mathrm{Y}_{5} \mathrm{Pt}_{4}$ there are infinite slabs similar
to those found in FeB and $\mathrm{U}_{3} \mathrm{Si}_{2}$ stacked alternately, while in $\mathrm{Zr}_{5} \mathrm{Si}_{4}$ only fragments of these slabs are arranged alternately in herring-bone fashion.

This work was partly supported by the Swiss National Science Foundation under Project No. 2.0040.78 .

References

Cromer, D. T. (1977). Acta Cryst. B33, 1993-1995.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Flack, H. D. (1975). J. Appl. Cryst. 8, 520-521.
Flack, H. D. (1977). Acta Cryst. A33, 890-898.
Iandelli, A. \& Palenzona, A. (1975). J. Less-Common Met. 43, 205-209.
Iglesias, J. E. \& Steinfink, H. (1972). J. Less-Common Met. 26, 45-52.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Kripyakevich, P. I. \& Jartis, V. A. (1975). Dopov. Akad. Nauk Ukr. RSR Ser. A, 1975, 1129-1131.
le Roy, J., Moreau, J. M., Paccard, D. \& Parthé, E. (1977). Acta Cryst. B33, 2414-2417.
le Roy, J., Moreau, J. M., Paccard, D. \& Parthé, E. (1978). Acta Cryst. B34, 9-13.

Parthé, E. \& Moreau, J. M. (1977). J. Less-Common Met. 53, 1-24.
Pfeifer, H. U. \& Schubert, K. (1966). Z. Metallkd. 57, 884-888.
Smith, G. S., Johnson, Q. \& Tharp, A. G. (1967). Acta Cryst. 22, 269-272.
XRAY system (1976). Version of March 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Yvon, K., Jeitschko, W. \& Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.

Acta Cryst. (1978). B34, 3318-3320

Structure du Chrome Pentacarbonyle Thiocarbonyle*

Par J. Y. Saillard et D. Grandjean
Laboratoire de Cristallochimie, associé au CNRS n° 254, Université de Rennes, avenue du Maréchal Leclerc, 35042 Rennes CEDEX, France

(Reçu le 11 mai 1978, accepté le 15 juin 1978)

Abstract

Cr}(\mathrm{CO})_{s}(\mathrm{CS})\), orthorhombic, Pnma, $a=$ 12.374 (3), $b=11.528$ (2), $c=6.629$ (1) $\AA, Z=4$. The structure was solved by both Fourier and direct methods. Full-matrix least-squares refinement con-

[^2]verged at $R=0.054$ and $R^{\prime \prime}=0.054$ for 846 independent reflexions. Structural disorder between the CS and the five CO groups is observed.

Introduction. La résolution de la structure cristalline de $\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{CS})$ a été entreprise dans le cadre de l'étude

[^0]: References: (a) Smith, Johnson \& Tharp (1967). (b) Iglesias \& Steinfink (1972). (c) Cromer (1977). (d) This work.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division, as Supplementary Publication No. SUP 33695 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Etude Structurale de Dérivés du Chrome (0). IV.

